MIMO/毫米波/FBMC 5G技术许许多今天只捡关键说
发表时间:2023-07-29 来源:明辉站整理相关软件相关文章人气:
[摘要]距2020年5G正式商用越来越近,按照预期,5G最终的传输速率将可实现1Gb/s。另一方面,视频、直播等带来了爆发式的数据流,加之与日俱增的联网设备数量,4G已渐渐不能满足这些应用需求,因此我们急需...
距2020年5G正式商用越来越近,按照预期,5G最终的传输速率将可实现1Gb/s。另一方面,视频、直播等带来了爆发式的数据流,加之与日俱增的联网设备数量,4G已渐渐不能满足这些应用需求,因此我们急需5G的到来。很多人将其视为一场革命,确切而言,5G技术更像是4G的一种延续。其中,支撑5G的相关技术许许多,本期我们将捡其重点为大家介绍一二。
实际上,移动通信的每一次技术演进都是从需求与应用角度出发。30年来,全球移动通信共经历了4代发展,从第一代的语音,到第二代的语音+文本,再到第三代的多媒体,现阶段的第四代的移动互联网。
对于5G技术,其最显著的特点就是大数据、众连接与场景体验。所谓大数据,即是数据量大、数据速率高、数据服务为主,为移动互联网的发展提供支持,而众连接则指大量的物联网终端用户接入,提供连接一切的能力;至于场景体验,顾名思义就是提供对应不同场景的高用户体验。
未来的网络,将面对1000倍的数据容量增长,10至100倍的无线设备连接以及用户速率需求,5G要如何实现这些?其实,5G的关键技术多集中在无线部分,本期我们从所收集的5G技术中,挑出几个关键技术与各位分享。当然了,应该远不止这些。
FBMC滤波组多载波技术
在OFDM系统中,各子载波在时域相互正交,其频谱相互重叠,因此具有较高的频谱利用率,该技术一般应用在无线系统的数据传输中,然而由于无线信道的多径效应,使得符号间产生了干扰。为消除符号间干扰(ISl),而在符号间插入保护间隔。
插入保护间隔的一般方法是符号间置零,也就是发送第一个符号后停留一段时间,再发送第二个符号。在OFDM系统中,这样做虽减弱或消除了符号间干扰,却破坏了子载波间的正交性,因此造成子载波之间的干扰(ICI)。因此,此种方法在OFDM系统中并不能采用。
为了既可以消除ISI,同时又可以消除ICI,通常保护间隔是由CP(Cycle Prefix)充当。CP是系统开销,不传输有效数据,来降低频谱效率。FBMC则是利用一组不交叠的带限子载波实现多载波传输,FMC对于频偏引起的载波间干扰非常小,不需要CP,极大提高了频率效率。
超宽带频谱
要知道,信道容量与带宽和SNR(信噪比)成正比,因此为了满足5G网络Gpbs级的数据传输速率,就需要有更大的带宽在其背后做支持。频率越高,带宽就越大,信道容量也就越高。因此,高频段连续带宽成为5G的必然选择。
此外,得益于例如大规模MIMO等一些有效提升频谱效率的技术,即使是采用相对简单的调制技术,5G也可以实现在1Ghz的超带宽上达到10Gpbs的传输速率。
大规模MIMO技术
在上一段落中,我们提到了大规模MIMO,那么何为大规模MIMO技术?MIMO技术已经广泛应用于WIFI、LTE等,而我们最熟悉的可能要属无线路由器,在产品参数中我们经常会看到MIMO字样。理论上讲,天线越多频谱效率和传输可靠性也就越高。
多天线技术经历了从无源到有源,从二维(2D)到三维(3D),从高阶MIMO到大规模阵列的发展,将有望实现频谱效率提升数十倍甚至更高,是目前5G技术重要的研究方向之一。
大规模MIMO技术可通过一些低价位低功耗的天线组件来实现,为在高频段上进行移动通信提供了广阔前景,它可以成倍提升无线频谱效率,增强网络覆盖与系统容量,帮助运营商最大限度的利用已有站址和频谱资源。
ultra-dense Hetnets超密度异构网络
HetNet立体分层网络,指的是在宏蜂窝网络层中布放大量Microcell微蜂窝、Picocell微微蜂窝、Femtocell毫微微蜂窝等接入点,用以满足数据容量增长要求。而待跨入到5G时代,更多的“物-物”连接接入网络,届时HetNet网络的密度也会大大增加。
多技术载波聚合
再来说说多技术载波聚合(multi-technology carrier aggregation)。大概是3GPP R12已经提到多技术载波聚合技术标准。从发展趋势来看,未来的网络会是一个融合的网络,载波聚合技术不但要实现LTE内载波间的聚合,还要扩展到与3G、WIFI等网络的融合。多技术载波聚合技术与HetNet一起,最终将实现万物间的无缝连接。
非正交多址接入技术(NOMA)
3G采用的是直接序列码分多址(Direct Sequence CDMA ,DS-CDMA)技术,手机接收端使用Rake接收器,因其具备非正交的特性,就需要使用快速功率控制(Fast transmission power control ,即TPC)来解决手机与小区之间的远-近问题。
NOMA的基本思想是在发送端采用非正交发送,主动引入干扰信息,在接收端通过串行干扰删除(SIC)接收机实现正确解调。虽然,采用SIC技术的接收机复杂度有一定的提高,但是可以很好地提高频谱效率。其本质是用提高接收机的复杂度来换取频谱效率。
毫米波
之所以把毫米波放在文章的最后,原因在于笔者在前阵刚刚介绍过这部分内容。毫米波,频率30GHz到300GHz,波长范围1到10毫米的电磁波。具备充足的可用带宽,较高的天线增益,毫米波技术可以支持超高速的传输率,且波束窄,灵活可控,能连接大量设备。
在毫米波频段中,28GHz与60GHz是最有望应用在5G通信的两个频段。其中,28GHz的可用频谱带宽可达1GHz,60GHz每个信道的可用信号带宽则可达2GHz。毫米波的独有特性,使其在传播时不易受到自然光和热辐射源的影响,不光是通信,其还可应用于雷达、制导等诸多领域,应用前景广阔。
物理装置按系统结构的要求构成一个有机整体为计算机软件运行提供物质基础。