8皇后问题的高效解法-递归版
发表时间:2024-05-20 来源:明辉站整理相关软件相关文章人气:
[摘要]//8 Queen 递归算法//如果有一个Q 为 chess[i]=j;//则不安全的地方是 k行 j位置,j+k-i位置,j-k+i位置class Queen8 static final int QueenMax = 8; static int oktimes = 0; static i...
//8 Queen 递归算法
//如果有一个Q 为 chess[i]=j;
//则不安全的地方是 k行 j位置,j+k-i位置,j-k+i位置
class Queen8{
static final int QueenMax = 8;
static int oktimes = 0;
static int chess[] = new int[QueenMax];//每一个Queen的放置位置
public static void main(String args[]){
for (int i=0;i<QueenMax;i++)chess[i]=-1;
placequeen(0);
System.out.println("\n\n\n八皇后共有"+oktimes+"个解法 made by yifi 2003");
}
public static void placequeen(int num){ //num 为现在要放置的行数
int i=0;
boolean qsave[] = new boolean[QueenMax];
for(;i<QueenMax;i++) qsave[i]=true;
//下面先把安全位数组完成
i=0;//i 是现在要检查的数组值
while (i<num){
qsave[chess[i]]=false;
int k=num-i;
if ( (chess[i]+k >= 0) && (chess[i]+k < QueenMax) ) qsave[chess[i]+k]=false;
if ( (chess[i]-k >= 0) && (chess[i]-k < QueenMax) ) qsave[chess[i]-k]=false;
i++;
}
//下面历遍安全位
for(i=0;i<QueenMax;i++){
if (qsave[i]==false)continue;
if (num<QueenMax-1){
chess[num]=i;
placequeen(num+1);
}
else{ //num is last one
chess[num]=i;
oktimes++;
System.out.println("这是第"+oktimes+"个解法 如下:");
System.out.println("第n行: 1 2 3 4 5 6 7 8");
for (i=0;i<QueenMax;i++){
String row="第"+(i+1)+"行: ";
if (chess[i]==0);
else
for(int j=0;j<chess[i];j++) row+="--";
row+="++";
int j = chess[i];
while(j<QueenMax-1){row+="--";j++;}
System.out.println(row);
}
}
}
//历遍完成就停止
}
}